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Abstract. We study a subclass of tree-to-word transducers: linear tree-
to-word transducers, that cannot use several copies of the input. We aim
to study the equivalence problem on this class, by using minimization
and normalization techniques. We identify a Myhill-Nerode characteri-
zation. It provides a minimal normal form on our class, computable in
Exptime. This paper extends an already existing result on tree-to-word
transducers without copy or reordering (sequential tree-to-word trans-
ducers), by accounting for all the possible reorderings in the output.

1 Introduction

Transducers and their properties have long been studied in various domains of
computer sciences. The views on transducers that motivate this paper’s field of
research are mostly the result of the intersection of two approaches.

Language theory sees transducers as the natural extension of automata, with
an output. This view extends almost as far back as the study of regular languages,
and developed techniques to solve classical problems such as equivalence, type-
checking, or even learning problems (e.g. [11,10,4]) on increasingly wide classes
of transducers.

Functional programming sees transducers as a formal representation of some
programs. In order to study languages such as XSLT, XQuery, or XProc, used
to transform XML trees, classes of transducers that acted more and more like
functional programs were designed and studied. For example, deterministic top-
down tree transducers can be seen as a functional program that transform trees
from the root to the leaves, with finite memory. Different classes extend the
reach of transducers to encompass more of the functionalities of programming
languages.

Concatenation in the output, notably, plays an important role in the way
XSLT produces its outputs. Classes like macro-tree transducers [5], tree-to-word
transducers, or even word-to-word transducers with copies in the output [1] allow
such concatenation, but as this functionality appears to be difficult to combine
with the classical techniques of language theory, this is to the cost of very few
results carrying to these classes.

Tree-to-word transducers and Macro-tree transducers are of particular rel-
evance, as they allow concatenation in their output, and are at the current



frontier between the language theory approach of transducers and the approach
of transducers seen as functional programs.

Many problems are left open in these classes. Notably, in the general case for
Macro-tree transducers, the decidability equivalence is a famous long-standing
question, that has yet to be resolved. However, some pre-existing results exist
for fragments of these classes.

Equivalence for the subclass of linear size increase macro-tree transducers [3]
is proven to be decidable. It comes from a logic characterization, as if we bound
the number of times a transducer can copy the same subtree in the output,
then we limit the expressivity of macro-tree transducers into MSO-definable
translations, where equivalence is decidable in non-elementary complexity [4].

Equivalence for all tree-to-word transducers has recently been proven to be
decidable in randomized polynomial time [13]. Note that this result uses neither
classic logic methods nor the classic transducer methods, and does not provide
a characterization or Myhill-Nerode theorem.

Equivalence is Ptime for sequential tree-to-word transducers [6], that pre-
vents copying in the output and forces subtrees to produce following the order of
the input. Furthermore, using a Myhill-Nerode characterization, a normal form
computable in Exptime is shown to exist. This normal form was later proven
to be learnable in Ptime [7].

In this paper, we aim to study the linear tree-to-word transducers (or ltws),
a restriction of deterministic tree-to-word transducers that forbids copying in
the output, but allows the image of subtrees to be flipped in any order. This
is a more general class than sequential tree-to-word transducers, but still less
descriptive than general tree-to-word transductions. In this class, we show the
existence of a normal form, computable in Exptime.

Note that even if equivalence is already known to be decidable in a reasonable
complexity, finding a normal form is of general interest in and of itself. For
example, in [11,8,7], normal forms on transducers defined using a Myhill-Nerode
theorem are used to obtain a learning algorithm.

To define a normal form on ltws, we start by the methods used for sequential
tree-to-words transducers (stws) in [6]. We consider the notion of earliest stws,
which normalizes the output production. We can extend this notion to ltws and
study only earliest ltws without any loss of expressivity.

In [6], this is enough to obtain a Myhill-Nerode characterization. However,
by adding the possibility to flip subtree images to ltws, we created another way
for equivalent transducers to differ. The challenge presented by the extension of
the methods of [6] becomes to resolve this new degree of freedom, in order to
obtain a good normal form with a Myhill-Nerode characterization.

Outline.After introducing basic notions on words and trees, we will present
our class of linear tree-to-word transducers in Section 2. Then in Section 3 we
will extend the notion of earliest production in [6] to the linear case, and find
out that we can also extend the algorithm that takes a transducer and compute
and equivalent earliest one. However, this is no longer sufficient, as transducers
can now also differ in the order they produce their subtrees’ output in. Section 4



will detail exactly how two earliest transducers can still differ, by categorizing all
possible flips. Finally, Section 5 will compile these results into a Myhill-Nerode
theorem. This will allow us to establish a normal form, computable in Exptime.
We will conclude by a brief recap of the result, and propose several possible next
steps for this line of research.

2 Preliminaries

Words and Trees

We begin by fixing notations on standard notions over words and ranked trees.
Words. For a finite set of symbols ∆, we denote by ∆∗ the set of finite words

over ∆ with the concatenation operator · and the empty word ε. For a word u,
|u| is its length. For a set of words L, we denote lcp(L) the longest word u that is
a prefix of every word in L, or largest common prefix. Also, lcs(L) is the largest
common suffix of L. For w = u · v, the left quotient of w by u is u−1 ·w = v, and
the right quotient of w by v is w · v−1 = u.

Context-Free Grammars. For a word alphabet ∆, a context-free grammar
(or CFG) is a tuple G = {N,S,R} where

– N is a finite set of non-terminals.
– S ∈ N is the initial non-terminal.
– R is a finite set of rules of form A→ u0A1...Anun, where u0, ..., un are words

of ∆∗, and A1, ..., An are non-terminals of N .

The languages LA described by the non-terminal A is recursively defined as the
smallest language such that if A → u0A1...Anun ∈ R, and w1 ∈ LA1 , ..., wn ∈
LAn , then u0w1...wnun ∈ LA

We say that G describes LG = LS .
Ranked Trees. A ranked alphabet is a finite set of ranked symbols Σ =⋃

k>0 Σ
(k), where Σ(k) is the set of k-ary symbols. Every symbol has a unique

arity. A tree is a ranked ordered term over Σ. For example, t = f(a, g(b)) is a
tree over Σ if f ∈ Σ(2), g ∈ Σ(1), a, b ∈ Σ(0). The set of all trees on Σ is TΣ .

Linear Tree-to-Word Transducers

We define linear tree-to-word transducer, that define a function from TΣ to ∆∗.

Definition 1. A linear tree-to-word transducer (ltw) is a tuple
M = {Σ,∆,Q, ax, δ} where

– Σ is a tree alphabet,
– ∆ is a finite word alphabet of output symbols,
– Q is a finite set of states,
– ax is a axiom of form u0qu1, where u0, u1 ∈ ∆∗ and q ∈ Q,



– δ is a set of rules of the form
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un

where q, q1, . . . , qn ∈ Q, f ∈ Σ of rank n and u0 . . . un ∈ ∆∗; σ is a permu-
tation on {1, . . . , n}. There is at most one rule per pair q, f .

We define recursively the function JMKq of a state q. JMKq(f(t1...tn)) is

– u0JMKq1(tσ(1))u1 . . . JMKqn(tσ(n))un,
if q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ

– undefined, if there is no rule for q, f in δ.

The function JMK of a transducer M with axiom u0qu1 is defined as
JMK(s) = u0JMKq(s)u1.

Note that to get the definition of stws as made in [6], we just have to impose
that in every rule, σ is the identity.

Example 2. Consider the function JMK : t 7→ 0|t|, that counts the number of
nodes in t and writes a 0 in the output for each of them. Our ltw has only one
state q, and its axiom is ax = q

q(f(x1, x2))→ 0 · q(x1) · q(x2)
q(a)→ 0, q(b)→ 0

The image of f(a, b) is JMK(f(a, b)) = JMKq(f(a, b)) , using the axiom. Then we
use the first rule to get 0 · JMKq(a) · JMKq(b), and finally, 0 · 0 · 0

We denote with dom(JMK) the domain of a transducer M , i.e. all trees such
that JMK(t) is defined. Similarly, dom(JMKq) is the domain of state q. We note
Lq the production of q, i.e. the set {JMKq(t)|t ∈ dom(JMKq)}.

We define accessibility between states as the transitive closure of appearance
in a rule. This means q is accessible from itself, and if there is a rule
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un, and q accessible from q′, then all states qi,
1 6 i 6 n, are accessible from q′.

A first remark is that state productions are languages of some CFG:
Lemma 3. One can compute in polynomial time a CFG that describes Lq.

Proof. For a ltw M = {Σ,∆,Q, ax, δ}, we create a grammar G = {N,Sq, R}
where

– For each q′ ∈ Q there is a matching Sq′ ∈ N .
– For each rule q′, f → u′0q

′
1(xσ′(1)) . . . q′n(xσ′(n))u′n, there is a matching rule

Sq′ → u′0Sq′1 ...Sq′nu
′
n

We show that for all Sq′ , LSq′ = Lq′ by induction on the derivation in the
CFG. w ∈ Sq′ if and only if there exists Sq′ → u′0Sq′1 ...Sq′nu

′
n ∈ R and w1 ∈

LSq′1
, ..., wn ∈ LSq′n

such that w = u′0w1...wnu
′
n. By induction, w1 ∈ Lq′1 , ..., wn ∈

Lq′n . This means that w ∈ Sq′ if and only if there exists a rule
q′, f → u′0q

′
1(xσ′(1)) . . . q′n(xσ′(n))u′n ∈ δ and trees tσ(1), ..., tσ(n) such that w =

u′0JMKq′1(tσ(1))...JMKq′1(tσ(n))u′n. Hence w ∈ Sq′ if and only if there exists a tree
t = f(t1, ..., tn) such that JMKq′(t) = w.



We start the normalization process with a natural notion of trimmed ltws.

Definition 4. A ltw is trimmed if its axiom is u0q0v0, and every state q is
accessible from q0 and of non-empty domain.

Note that all ltws can be made trimmed by deleting all their useless states.

Lemma 5. For M a ltw, one can compute an equivalent trimmed ltw in
linear time.

3 Earliest Linear Transducers

It is possible for different ltws to encode the same transformation. To reach
a normal form , we start by requiring our ltws to produce their output "as
soon as possible". This method is common for transducers [2,10], and has been
adapted to sequential tree-to-word transducers in [6]. In this case, the way an
output word is produced by a tree-to-word can be "early" in two fashions: it can
be produced sooner in the input rather than later, or it can output letters on
the left of a rule rather than on the right. We take the natural extension of this
definition for ltws and find we can reuse the results and algorithms of [6].

Example 6. Consider our previous example (Ex. 2). The function JMK : t 7→ 0|t|,
Our transducer has only one state q, and its axiom is ax = q

q(f(x1, x2))→ 0 · q(x1) · q(x2)
q(a)→ 0, q(b)→ 0

Since all productions of q start with a 0, this ltw does not produce as up in the
input as possible. To change this, we form a new state q′ that produces one 0
less than q. By removing the 0 at the beginning of each rule of q, and replacing
each call q(xi) by 0q′(xi), we get a new equivalent ltw M ′ of axiom ax′ = 0 · q′

q′(f(x1, x2))→ 0 · q′(x1) · 0 · q′(x2)
q′(a)→ ε q′(b)→ ε

Example 7. Consider our previous example (Ex. 6). We could replace the first
rule by q′(f(x1, x2))→ 0 · 0 · q′(x1) · q′(x2). This new ltw would produce "more
to the left", but still be equivalent to the first M .

In order to eliminate these differences in output strategies, we want transducers
to produce the output as up in the input tree as possible, and then as to the left
as possible. We formalize these notions in the definition of earliest ltws.

Let M be a ltw, and q one of its states. We note lcp(q) (respectively lcs(q))
the largest common prefix (respectively suffix) of the range of JMKq. We extend
this definition to lcp(qu), where u ∈ ∆∗. We note lcp(qu) (respectively lcs(q)) the
largest common prefix (respectively suffix) of the set {JMKq(t)u|t ∈ dom(JMKq)}.

Definition 8. A ltw M is earliest if it is trimmed, and:

– For every state q, lcp(q) = lcs(q) = ε



– For each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ, for every i from 1 to n,
lcp(qiui) = ε

This definition is a generalization of the one found in [6] from stws to all
ltws. The first item ensures an earliest ltw outputs as soon as possible, the
second that it produces as to the left as possible.

We will note that this second point in particular ensures a specific property on
production in a rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un: u0q1(xσ(1))...qi(xσ(i))ui
produces as much of JMKq(f(s1...sn)) by just knowing sσ(1), ..., sσ(i). We will
formalize this property in the two following Lemmas. We can say that the right
part of a rule cannot guess its first letter:

Lemma 9. For M an earliest ltw, for q, f → u0q1(xσ(1)) . . . qn(xσ(n))un one
of its rules, for all i from 1 to n, lcp(Lqiui...Lqnun) = ε.

Proof. This proof works by recursion, from i = n to i = 1. For i = n, we know
lcp(Lqn

un) = ε because M is earliest.
For the recursion, for i + 1 we have lcp(Lqi+1ui+1...Lqn

un) = ε. Since M is
earliest, we know that lcp(qiui) = ε. We distinguish two cases:

– If there exists two letters a 6= b such that Lqiui contains a word that starts
with a and a word that starts with b, then Lqi

ui...un also contains a word that
starts with a and a word that starts with b. This means lcp(Lqi

ui...un) = ε.
– If all non-empty words of Lqi

ui start with the same letter a, to ensure
lcp(qiui) = ε, we have ε ∈ Lqi

ui. This notably means that Lqi+1ui+1...un ⊆
Lqi

ui...Lqn
un. Hence, lcp(Lqi

ui...Lqn
un) is smaller than

lcp(Lqi+1ui+1...Lqn
un) = ε, which means lcp(Lqi

ui...Lqn
un) = ε.

Conversely, we can say that the part on the left of the rule produces as much
as possible, i.e. the lcp of all JMKq(f(s1...sn)) for some fixed sσ(1), ..., sσ(i).

Lemma 10. For M an earliest ltw, q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ,
for i such that i 6 n, tσ(1), ..., tσ(i) respectively in dom(JMKq1), ..., dom(JMKqi

),
then u0JMKq1(tσ(1))...JMKqi

(tσ(i))ui is the lcp of the set:{
JMKq(f(s1, ...sn))|sσ(1) = tσ(1), ..., sσ(i) = tσ(i)

}
.

Proof. This comes from Lemma 9: for all s = f(s1, ..., sn), we have:
JMKq(s) = u0JMKq1(tσ(1))u1 . . . JMKqn

(tσ(n))un
If we fix sσ(1) = tσ(1), ..., sσ(i) = tσ(i), all JMKq(s) start with
u0JMKq1(tσ(1))u1 . . . JMKqi

(tσ(i))ui. This means that
lcp
({

JMKq(f(s1, ...sn))|sσ(1) = tσ(1), ..., sσ(i) = tσ(i)
})

=
u0JMKq1(tσ(1))u1 . . . JMKqn

(tσ(n))unlcp(Lqi+1ui+1...un)
Since lcp(Lqi+1ui+1...un) = ε, we have what we wanted to prove.

Some important properties extend from [6] to earliest ltws, most notably
the fact that all ltws can be made earliest.



Lemma 11. For M a ltw, one can compute an equivalent earliest ltw in
exponential time.

This result is a direct generalization of the construction in Section 3 of [6].
We build the equivalent earliest ltw M ′ with two kinds of steps:

– If lcp(qu) = v, where v is a prefix of u, we can slide v through state q by cre-
ating a new state

[
v−1qv

]
such that for all t, JM ′K[v−1qv](t) = v−1JMKq(t)v.

Every occurrence of q(xi)v in a rule of M is replaced by v
[
v−1qv

]
(xi).

– If lcp(q) = v, we can produce v outside of q by creating a new state
[
v−1q

]
such that for all t, JM ′K[v−1q](t) = v−1JMKq(t). Every occurrence of q(xi) in
a rule of M is replaced by v

[
v−1q

]
(xi).

Symmetrically, if lcs(q) = v, we create a state
[
qv−1], and every occurrence

of q(xi) in a rule of M is replaced by
[
qv−1] (xi)v.

Note that the exponential bound is, in fact, an exact bound, as some ltws
gain an exponential number of states through this process.

In [6], earliest stws are actually enough to make a normal form using a
Myhill-Nerode theorem: by minimizing earliest stws (merging states with the
same JMKq), we end up with a normal form with a minimal number of states.
However, in the wider case of ltws, there are still ways for two states to be
equivalent and yet not syntactically equals. This impedes the process of mini-
mization. As we will see in the next part, it remains to study how the images of
subtrees can be reordered in earliest ltws while conserving equivalence.

4 Reordering in Earliest Transducers

Syntactically different earliest ltws may still be equivalent. Indeed, unlike se-
quential tree transducers [6], which impose the output to follow the order of the
input, ltws permit to flip the order.

The main point of this paper is the observation that it is sufficient to nor-
malize the flips in the output production of earliest ltws, in order to find a
unique normal form for equivalent ltws. To this end, we will prove that order
differences are only possible in very specific cases. We start illustrating such flips
in some examples, and then discuss the necessary and sufficient condition that
dictates when a flip is possible.

Example 12. We reconsider Example 7 . This earliest transducer “counts” the
number of nodes in the input tree has only one state q′. It has the axiom ax′ =
0 · q′ and the following rules:

q′(f(x1, x2))→ 0 · 0 · q′(x1) · q′(x2), q′(a)→ ε, q′(b)→ ε.

We can now flip the order of the terms q′(x2) and q′(x1) in the first rule, and
replace it by:

q′(f(x1, x2))→ 0 · 0 · q′(x2) · q′(x1).
This does not change JM ′K, since just the order is changed in which the nodes
of the first and second subtree of the input are counted.



Of course, it is not always possible to flip two occurrences of terms q1(xσ(1)) and
q2(xσ(2)) in ltw rules.

Example 13. Consider an earliest transducer that outputs the frontier of the
input tree while replacing a by 0 and b by 1. This transducer has a single state
q, the axiom ax = q, and the following rules:

q(f(x1, x2))→ q(x1) · q(x2), q(a)→ 0, q(b)→ 1.
Clearly, replacing the first rule by a flipped variant q(f(x1, x2))→ q(x2) · q(x1)
would not preserve transducer equivalence since f(a, b) would be transformed to
10 instead of 01. More generally, no ltw with rule q(f(x1, x2)) → u0 · q1(x2) ·
u1 · q2(x1) · u2 produces the correct output.

Our goal is to understand the conditions when variable flips are possible.

Definition 14. For M, M ′ two ltws, q ∈ Q, q′ ∈ Q′,
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ
q′, f → u′0q

′
1(xσ′(1)) . . . q′n(xσ′(n))u′n ∈ δ′

are said to be twin rules if q and q′ are equivalent.

4.1 Reordering Erasing States

We start the study of possible reordering with the obvious case of states that
only produce ε: they can take every position in every rule without changing the
semantics of the states. The first step towards normalization would then be to
fix the positions of erasing states in the rules, to prevent differences in equivalent
earliest ltws: we put all erasing states at the end of any rule they appear in, in
ascending subtree order.

Definition 15. For M a ltw, a state q is erasing if for all t ∈ dom(JMKq),
JMKq(t) = ε

We show that if two states are equivalent, they call erasing states on the same
subtrees. We start by this length consideration:

Lemma 16. For two twin rules of earliest ltws
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
q′, f → u′0q

′
1(xσ′(1)) . . . q′n(xσ′(n))u′n

For i, j such that σ(i) = σ′(j), and tσ(i) ∈ dom(JMKqi
) then

|JMKqi(tσ(i))| = |JM ′Kq′i(tσ(i))|

Proof. The equivalence of q and q′ gives for all t1, ..., tn:
u0JMKq1(tσ(1))...JMKqn

(tσ(n))un = u0JM ′Kq′1(tσ′(1))...JM ′Kq′n(tσ′(n))u′n
We fix a value for every tk except tσ(i). We say

u = u0...JMKqi−1(tσ(i−1))ui , v = ui+1JMKqi+1(tσ(i+1))...un
u′ = u′0...JM

′Kq′
j−1

(tσ′(j−1))u′j , v′ = u′j+1JM
′Kq′

j+1
(tσ′(j+1))...u′n



This gives us that for all tσ(i), uJMKqi
(tσ(i))v = u′JM ′Kq′

j
(tσ(i))v′. Notably,

|JMKqi
(tσ(i))| − |JM ′Kq′j (tσ(i))| = |u′| + |v′| − |u| − |v|. This means the differ-

ence in size of these two production does not depend on tσ(i). We will show that
this difference has to be 0.

If |JMKqi
(tσ(i))| > |JM ′Kq′j (tσ(i))| then |u| < |u′|, or |v| < |v′|. If |u| < |u′|,

then u′ = uw. This means uJMKqi
(tσ(i))v = uwJM ′Kq′

j
(tσ(i))v′. For all tσ(i),

JMKqi(tσ(i)) 6= ε (it is longer than JM ′Kq′
j
(tσ(i))), and its first letter is always

the first letter of w. This means lcp(qi) 6= ε, which is impossible in an earli-
est ltw. |v| < |v′| leads to lcs(qi) 6= ε, another contradiction. By symmetry,
|JM ′Kq′

j
(tσ(i))| > |JMKqi

(tσ(i))| also leads to contradiction. Therefore, both are
of same size.

A direct consequence of this lemma is that in both twin rules, the subtrees
read by an erasing state are the same:

Lemma 17. For two twin rules of earliest ltws
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
q′, f → u′0q

′
1(xσ′(1)) . . . q′n(xσ′(n))u′n

If qi is erasing, and σ(i) = σ′(j), then q′j is erasing.

To normalize the order of erasing states in twin rules, we note that since erasing
states produce no output letter, their position in a rule is not important to the
semantics or the earliest property. We can thus push them to the right.

Lemma 18. For M an earliest ltw, q, f → u0q1(xσ(1)) . . . qn(xσ(n))un a rule
in M , and qi an erasing state. Then replacing this rule by

q, f → u0q1(xσ(1))...ui−1ui...qn(xσ(n))unqi(xσ(i))
does not change JMKq, and M remains earliest.

Proof. While the proof that JMKq remains unchanged is technically an inductive
proof to show that M and all its states keep the same semantics, it is clear that
the only important step is to ensure that for s = f(s1, ..., sn), JMKq(s) remains
unchanged. With the old rule, we have JMKq(s) = u0...ui−1JMKqi

(sσ(i))ui...un.
Since qi is erasing, JMKqi

(sσ(i)) = ε and JMKq(s) = u0...ui−1ui...unJMKqi
(sσ(i)).

Hence, the rule q, f → u0q1(xσ(1))...ui−1ui...qn(xσ(n))unqi(xσ(i)) produces the
right output: JMKq does not change.

To prove that M remains earliest, we just have to check that
lcp(qi−1ui−1ui) = ε. Since M was earliest with the previous rule, we have
lcp(qiui) = ε. Since qi is erasing, this means ui = ε. Since M was earliest
with the previous rule, we have lcp(qi−1ui−1) = ε. Hence, lcp(qi−1ui−1ui) = ε.

Given this lemma, we can define a first normalization step where all erasing
states appear at the end of the rules in ascending subtree order.

Definition 19. An earliest ltw M is erase-ordered if for every rule
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈ δ, if qi is erasing, then for all j > i, qj is
erasing, and σ(i) < σ(j).



Lemma 20. For M an earliest ltw, one can make M erase-ordered in polyno-
mial time without changing the semantic of its states.

Proof. We can detect which states are erasing in polynomial time: as shown in
Lemma 3, we can compute in polynomial time a grammar that describes Lq.
Deciding if a grammar describes {ε} can be decided in polynomial time. From
there, Lemma 18 ensures that making a ltw erase-ordered is just a matter of
pushing all erasing states at the end of the rules and them sorting them in
ascending subtree order, which can be done in polynomial time.

4.2 Reordering Producing States

As we saw in Example 13, some flips between states are not possible. We will now
study what makes reordering non-erasing states possible. As we will see, only
few differences are possible between twin rules in erase-ordered earliest ltws.
Two states transforming the same subtree are equivalent, and the only order
differences are caused by flipping states whose productions commute in ∆∗.

To prove this, we begin by establishing a few preliminary results. We first
show that to the left of σ and σ′’s first difference, both rules are identical.

Lemma 21. For two twin rules of erase-ordered earliest ltws M, M ′

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
q′, f → u′0q

′
1(xσ′(1)) . . . q′n(xσ′(n))u′n

For i such that if k 6 i then σ(k) = σ′(k), JMKqi
= JM ′Kq′

i
, and ui = u′i′

Proof. This results from Lemma 10: if σ and σ′ coincide before i, then for all
tσ(1), ..., tσ(i), u0JMKq1(tσ(1))...ui and u′0JM ′Kq1(tσ′(1))...u′i are both equal to the
lcp of

{
JMKq(f(s1, ..., sn))|sσ(1) = tσ(1), ..., sσ(n) = tσ(n)

}
. This means that:

u0JMKq1(tσ(1))...JMKqi
(tσ(i))ui = u0JM ′Kq′1(tσ′(1))...JM ′Kq′i(tσ′(i))u

′
i

Since this is also true for i−1, we can remove everything but the last part for each
side of this equation, to obtain that for all tσ(i), JMKqi

(tσ(i))ui = JM ′Kq′
i
(tσ(i))u′i.

Lemma 16 gives us |JMKqi
(tσ(i))| = |JM ′Kq′i(tσ′(i))|, and ui = u′i. This means that

qi and q′i are equivalent, and ui = u′i.

It still remains to show what happens when σ and σ′ stop coinciding. We
study the leftmost order difference between two twin rules in erasing-ordered
earliest ltws, that is to say the smallest i such that σ(i) 6= σ′(i). Note that
Lemma 17 ensures that such a difference occurs before the end of the rule where
the erasing states are sorted.

Lemma 22. For two twin rules of erase-ordered earliest ltws M, M ′

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
q′, f → u′0q

′
1(xσ′(1)) . . . q′n(xσ′(n))u′n

For i such that σ(i) 6= σ′(i) and for any k < i, σ(k) = σ′(k), for j such that
σ′(i) = σ(j), we have:



(A) For all k from i to j − 1, uk = ε and there exists tεσ(k)
such that JMKqk

(tεσ(k)) = ε

(A’) For all k from i to j, for k′ such that σ(k) = σ′(k′), for l from i to k′ − 1,
u′l = ε and there exists tεσ′(l) such that JM ′Kq′

l
(tεσ′(l)) = ε

(B) For all k from i to j, for k′ such that σ(k) = σ′(k′), qk is equivalent to q′k′
(C) All qi, ..., qj are periodic of same period.

Proof. We first prove point (A), then (A’) with the same arguments. We then
use them to show point (B), then from (A), (A’) and (B) we finally show point
(C).

For point (A), we use the equivalence of q and q′. For all t1, ..., tn,
u0JMKq1(tσ(1))...JMKqn

(tσ(n))un = u0JM ′Kq′1(tσ′(1))...JM ′Kq′n(tσ′(n))u′n
Lemma 21 gives us that everything up to ui−1 and u′i−1 coincide. We then get

JMKqi
(tσ(i))...JMKqn

(tσ(n))un = JM ′Kq′
i
(tσ′(i))...JM ′Kq′n(tσ′(n))u′n

Since q′i is not erasing, we can fix tσ′(i) such that JM ′Kq′
i
(tσ′(i)) 6= ε. We call its

first letter a. All non-ε productions of qi must begin by a. This is only possible in
an earliest if there exists tεσ(i) such that JMKqi(tεσ(i)) = ε. We now fix tσ(i) = tεσ(i).
If ui 6= ε, its first letter is a. This is impossible in an earliest since it would mean
lcp(qiui) 6= ε. Hence ui = ε We can make the same reasoning for qi+1 and ui+1,
and so on all the way to qj−1 and uj−1.

Point (A’) uses a similar argument. we start from
JMKqi

(tσ(i))...JMKqn
(tσ(n))un = JM ′Kq′

i
(tσ′(i))...JM ′Kq′n(tσ′(n))u′n

Using point (A), we choose tσ(i) = tεσ(i), ..., tσ(k−1) = tεσ(k−1). We get
JMKqk

(tσ(k))...JMKqn
(tσ(n))un = JM ′Kq′

i
(tσ′(i))...JM ′Kq′n(tσ′(n))u′n

Using the same argument as we used for point (A), we can choose tσ(k) such
that JMKqk

(tσ(k)) 6= ε, and conclude that for l from i to k′− 1, u′l = ε and there
exists tεσ′(l) such that JM ′Kq′

l
(tεσ′(l)) = ε.

For point (B), we use point (A) and (A’) to eliminate everything in front of
qk and q′k′ by picking all tεσ(l) up to k − 1 and all tεσ′(l′) up to k′ − 1.

JMKqk
(tσ(k))...JMKqn

(tσ(n))un = JM ′Kq′
k′

(tσ′(k′))...JM ′Kq′n(tσ′(n))u′n
From Lemma 16, we know that |JMKqk

(tσ(k))| = |JM ′Kq′
k′

(tσ(k))|. We conclude
that qk and q′k′ are equivalent.

For point (C), we take k′ such that σ(k) = σ′(k′). We use (A) to erase
everything but qk, qj , q′i and q′k′ by picking every tεσ(l) and tεσ′(l′) except theirs.

JMKqk
(tσ(k))JMKqj

(tσ(j))...un = JM ′Kq′
i
(tσ′(i))JM ′Kq′

k′
(tσ′(k′))...u′n

Point (B) gives qk is equivalent to q′k′ and qj is equivalent to q′i. We get that
JMKqk

(tσ(k))JMKqj
(tσ(j)) = JMKqj

(tσ(j))JMKqk
(tσ(k)). This means that the pro-

ductions of qk and qj commute, which in ∆∗ is equivalent to say they are words
of same period. Therefore, qj and qk are periodic of same period.

This result allows us to resolve the first order different between two twin
rules by flipping qj with neighbouring periodic states of same period. We can
iterate this method to solve all order differences.



Theorem 23. For two twin rules of erase-ordered earliest ltws,
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
q′, f → u′0q

′
1(xσ′(1)) . . . q′n(xσ′(n))u′n

One can replace the rule of q to another rule of same subtree order as the rule
of q′ only by flipping neighbour states qk and qk+1 of same period where uk = ε.

We can use Lemma 22 to solve the leftmost difference: for i first index such that
σ(i) 6= σ′(i), and j such that σ(i) = σ′(j), we have ui = ... = uj−1 = ε and
qi, ..., qj commute with each other. This means we can replace the first rule by:

q, f → u0...qj(xσ(j))qi(xσ(i))...qj−1(xσ(j−1))uj ...un
where qj(xσ(j)) is to the left of qi(xσ(i))...qj−1(xσ(j−1)) without changing JMKq.

This solves the leftmost order difference: we can iterate this method until
both rules have the same order.

Finally, we call Lemma 21 on the rules reordered by Theorem 23 to show
that two twin rules use equivalent states and the same constant words:

Theorem 24. For two twin rules of erase-ordered earliest ltws,
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
q′, f → u′0q

′
1(xσ′(1)) . . . q′n(xσ′(n))u′n

u0 = u′0, ..., un = u′n, and for k, k′ such that σ(k) = σ′(k′), JMKqk
= JM ′Kq′

k′
.

5 Myhill-Nerode Theorem and Normal Form

In Section 3, we showed that ltws can be made earliest. In Section 4, we first
showed that all earliest ltws can be made erase-ordered, then we made explicit
what reorderings are possible between two rules of two equivalent states. In this
section, we use these results to fix a reordering strategy. This will give us a new
normal form, ordered earliest ltws. We will show that each ltw in equivalent
to a unique minimal ordered earliest ltw, whose size is at worst exponential.

We first use Theorem 23 to define a new normal form: ordered earliest ltws.

Definition 25. A ltw M is said to be ordered earliest if it is earliest, and for
each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un:

– If qi is erasing, then for any j > i, qj is erasing.
– If ui = ε, and qi and qi+1 are periodic of same period, σ(i) < σ(i+ 1).

Note that this definition notably implies that any ordered earliest is erase-
ordered earliest. On top of that, we impose that if two adjacent states are periodic
of same period, and thus could be flipped, they are sorted by ascending subtree.

Lemma 26. For M an earliest ltw, one can make M ordered in polynomial
time without changing the semantic of its states.



Proof. We saw in Lemma 20 that one can push and sort erasing states. For
this result, sorting periodic states is not more complicated. However, one must
test first whether two states are periodic of same period. This can be done in
polynomial time. Lemma 3 shows how to build a CFG whose language is the
production of a state. Then, the problem of deciding if two CFG languages are
periodic of same period is known to be polynomial (see for example [12,9]).

These ordered ltws have a very important property for normalization pur-
poses: two twin rules have the same order σ.

Lemma 27. For two twin rules of ordered earliest ltws,
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
q′, f → u′0q

′
1(xσ′(1)) . . . q′n(xσ′(n))u′n

u0 = u′0, ..., un = u′n, σ = σ′ and for all k, JMKqk
= JM ′Kq′

k
.

Proof. Theorem 24 gives everything if we can prove σ = σ′. To prove σ = σ′,
we suppose there is a difference, then find a contradiction with the fact that
both transducers are ordered. Suppose σ 6= σ′. We call i the smallest index
such that σ(i) 6= σ′(i). Lemma 22 tells us that for j such that σ(j) = σ′(i),
all qi, qi+1, ..., qj are periodic of same period. By symmetry, for j′ such that
σ(i) = σ′(j′), all q′i, q′i+1, ..., q

′
j′ are periodic of same period. If σ(i) > σ′(i),

then σ(i) > σ(j) and the rule of q cannot belong to an ordered ltw, since qj
should appear before qi. If σ′(i) > σ(i), then σ′(i) > σ′(j′) and the rule of q′
cannot belong to an ordered ltw, since q′j′ should appear before q′i. This is a
contradiction: we conclude that it is impossible for σ to be different to σ′.

Our goal is now to show the existence of a unique minimal normal ltw
equivalent to anyM . We start by showing that if we run in parallel two equivalent
earliest ltws, they use equivalent states when transforming the same subtree.
We first formalize this intuition by defining co-reachable states, and their desired
property:

Definition 28. For two ltws M, M ′, we define co-reachable pair of Q×Q′:

– If ax = u0q0v0 and ax′ = u′0q
′
0v
′
0 then q0 and q′0 are co-reachable.

– If q and q′ are co-reachable,
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
q′, f → u′0q

′
1(xσ′(1)) . . . q′n(xσ′(n))u′n

and k, k′ such that σ(k) = σ′(k′), then qk and q′k′ are co-reachable.

Lemma 29. For two equivalent earliest ltws M and M ′, if q and q′ are co-
reachable, then JMKq = JM ′Kq′

Proof. By induction on co-reachable pairs. If ax = u0q0v0 and ax′ = u′0q
′
0v
′
0,

since M and M ′ are earliest, u0 = lcp(JMK) = lcp(JM ′K) = u′0. Then, v0 =
lcs(q0v0) = lcs(q′0v′0) = v′0. We then get that q0 and q′0 are equivalent.



The inductive case uses Theorem 24: for qi and q′j co-reachable such that
there exists q, q′ co-reachable (and equivalent by induction hypothesis), and two
twin rules

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
q′, f → u′0q

′
1(xσ′(1)) . . . q′n(xσ′(n))u′n

such that σ(i) = σ(j), Theorem 24 ensures that qi and q′j are equivalent.

This allows us to show that two earliest ltws use equivalent states:

Lemma 30. For two equivalent earliest ltws M and M ′, for q state of M ,
there exist an equivalent state q′ in M ′

Proof. Since M is earliest, it is trimmed. This means that any state q of M can
be reached in a run of M . Therefore, by making the same run in parallel in M ′,
we find q′ such that q and q′ are co-reachable, and by Lemma 29, equivalent.

Since all equivalent earliest ltws use the same states, they have the minimal
amount of states when they don’t have two redundant states q, q′ such that
JMKq = JMKq′ .

We first show that such a minimal ordered ltw can always be found from
an ordered ltw efficiently:

Lemma 31. For M an ordered ltw, one can make an equivalent M ′ minimal
ordered in polynomial time

Proof. The idea behind the algorithm is simple: if two states q and q′ are equiv-
alent, they are "merged": q′ is deleted, and every occurrence of q′ in rules is
replaced by an occurrence of q. It is clear that such a merge leavesM ′ equivalent
to M . Furthermore, when no new redundant states are found, M ′ is minimal.

This algorithm can only work if we can test in polynomial time if two states
are redundant. To this end, we note that Lemma 27 gives a necessary and suf-
ficient condition for two states to be equivalent: JMKq = JMKq′ if and only if
for every rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un there exists a matching rule
q′, f → u′0q

′
1(xσ′(1)) . . . q′n(xσ′(n))u′n such that u1 = u′1, ..., un = u′n, σ = σ′,

for all k from 1 to n, JMKqk
= JMKq′

k
, and reciprocally every rule of q′ has a

matching rule in q.
From there finding out which states are redundant can be done using an algo-

rithm similar to the minimization of deterministic finite word automata: we find
the equivalent classes of indistinguishable states by supposing them all indistin-
guishable at first, then refining this assumption through examination of their
rules using the previously described criterion. When the refining ends, only in-
distinguishable (and therefore equivalent) states remain in the same equivalence
class.

We remind that this means this minimal normal form can be found from any ltw
in exponential time, as a combination of Lemma 11, Lemma 26, and Lemma 31:



Theorem 32. For M a ltw, one can make an equivalent M ′ minimal ordered
in exponential time

All that remains is to show that minimal ordered ltws characterise a unique
minimal normal form on ltws.

Theorem 33. For M a ltw, there exists a unique minimal ordered earliest
ltw M ′ equivalent to M (up to state renaming).

Proof. The existence of such a minimal ordered earliest ltw derives directly
from Theorem 32.

The uniqueness derives from several properties we showed in this paper.
Imagine M and M ′ two equivalent minimal ordered earliest ltws. The fact
that they have equivalent states come from Lemma 30. Since both are minimal,
neither have redundant state: each q of M is equivalent to exactly one q′ of M ′
and vice-versa. We will now show that any rule of M ′ is a rule of M where every
occurrence of a state of M is replaced by its unique equivalent match in M ′.
Consider two twin rules in these transducers.

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
q′, f → u′0q

′
1(xσ′(1)) . . . q′n(xσ′(n))u′n

Lemma 27 ensures that u0 = u′0, ..., un = u′n, σ = σ′ and for all k, JMKqk
=

JM ′Kq′
k
. Since M and M ′ are minimal, each occurrence of qk is replaced by the

same q′k, the unique state of M ′ equivalent to qk. In other words, both rules are
identical up to renaming each state of M by its unique equivalent state of M ′,
or vice-versa.

6 Conclusion and Future Work

This paper’s goal was to solve the equivalence problem on linear tree-to-word
transducers, by establishing a normal form and a Myhill-Nerode theorem on
this class. To do so we naturally extended the notion of earliest transducers that
already existed in sequential tree transducers [6]. However it appeared that this
was no longer enough to define a normal form: we studied all possible reorderings
that could happen in an earliest ltw. We then used this knowledge to define a
new normal form, that has both an output strategy (earliest) and an ordering
strategy (ordered earliest), computable from any ltw in Exptime.

There are several ways to follow up on this result: one would be adapting the
learning algorithm presented in [7], accounting for the fact that we now also have
to learn the order in which the images appear. It could also be relevant to note
that in [6], another algorithm decides equivalence in polynomial time, which is
more efficient than computing the normal form. Such an algorithm would be an
improvement over the actual randomized polynomial algorithm by [13]. As far
as Myhill-Nerode theorems go, the next step would be to consider all tree-to-
word transducers. This problem is known to be difficult. Recently, [13] gave a
randomized polynomial algorithm to decide equivalence, but did not provide a
Myhill-Nerode characterization.
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